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Abstract
A wavelet-Galerkin procedure is derived and implemented for the numerical
solution of inhomogeneous diffusion equations subject to mass specification
involving non-polynomial functions. It is demonstrated that the accuracy of
approximation of these functions by polynomial interpolation at Chebyshev
nodes is in good agreement with the exact solution for several numerical
experiments.

PACS numbers: 02.30.Jr, 02.60.Lj

1. Introduction

Several physical problems can be modelled by the following partial differential equations:

ut(x, t) = uxx(x, t) + S(x, t) 0 < x < 1 0 < t � T (1)

u(x, 0) = f (x) 0 < x < 1 (2)

u(1, t) = g(t) 0 < t � T (3)∫ β

0
u(x, t) dx = m(t) 0 < β < 1. (4)

where S(x, t), f (x), g(t) and m(t) are known functions (assumed to be sufficiently smooth to
guarantee a unique smooth solution) and T is a given positive constant. The subscripts x and t
denote the respective partial differentiation.

The existence, uniqueness and continuous dependence on data of the solution to this
problem have been studied by Cannon et al [1–3]. Some numerical schemes (other than the
wavelet-Galerkin scheme) for solving problems of this sort have been given in Cannon et al
[4, 5] and Fairweather and Saylor [6].
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Currently, several investigations are being carried out which aim at exploiting the
properties of wavelet functions in widely different areas. In areas such as time-series analysis,
image processing, approximation theory and preconditioning dense matrices, wavelets are
recognized as a powerful tool. Another area in which wavelet analysis is gaining considerable
attention is the numerical analysis of differential equations. After discretizing the differential
equation in a conventional way like the finite difference approximation, wavelets can be used
for algebraic manipulations in the system of equations obtained which may lead to a better
condition number on the resulting system. An approach to the study of partial differential
equations is based on this idea where it has been shown that the differential operator is
approximately diagonal in the wavelet bases. Another approach to the study of differential
equations is to use the wavelet bases in place of other conventional bases such as Fourier,
Legendre or Chebyshev bases in the spectral methods. The purpose of the present paper is to
implement the wavelet-Galerkin method for the problem described by equations (1)–(4). In
this direction, we will adopt the application of wavelet bases (precisely the scaling function
bases) to approximate the solution of this problem.

Generally, applying the wavelet-Galerkin procedure to the differential equations involves
the evaluation of connection coefficients to approximate derivatives. The connection
coefficients are integrals with integrands being the product of scaling functions and their
derivatives (see for example Beylkin [7] and Chen et al [8]).

The main obstacle in that direction is that these connection coefficients require the
inhomogeneity term S(x, t) in the differential equation as well as the function f (x) of the
initial condition to be in polynomial form. Therefore, most works that use wavelet-Galerkin
methods to solve partial differential equations are limited to cases in which the inhomogeneity
term and initial conditions are polynomials in the spatial variable (see Chen et al [8], Lin and
Zhou [9] and Dahmen [10]). However, in the present work we overcome this difficulty by
interpolating the non-polynomial functions S(x, t) and f (x) in terms of suitable polynomials
in the spatial variable x. It has been shown that the accuracy of approximation of these
functions by polynomial interpolation at Chebyshev nodes is in good agreement with the
exact solution for several numerical experiments. A sample of these numerical experiments
is exhibited in this paper.

2. Preliminaries and fundamentals

This section is devoted to introducing some basic properties of wavelets, an error estimate for
expanding a function by scaling function bases, a definition of some connection coefficients
and an error estimate for approximating functions by interpolating polynomials.

Firstly, we give a brief review of the constructions and some basic properties of wavelets.
Daubechies [11] constructed a family of orthonormal bases of compactly supported wavelets
for the space of square-integrable functions L2(R). The wavelet function �(x) is derived
from the normalized scaling function ϕ(x) described by the scaling equation

ϕ(x) =
L−1∑
k=0

hkϕ(2x − k)

where hk, k = 0, . . . , L − 1 is a set of N (an even integer) coefficients that were computed
by constructing a certain trigonometric polynomial, see Daubechies [12]. Once ϕ(x) is
determined, the multiresolution approach asserts that

�(x) =
L−1∑
k=0

(−1)khN−k−1ϕ(2x − k)
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will be a wavelet. Define, for j, k ε Z (the set of integer numbers)

ϕj,k(x) =
√

2jϕ(2j x − k) (5)

and

�j,k(x) =
√

2j�(2j x − k).

Let Wj = span {�j,k(x) : k ε Z}. Then
⊕∞

j=−∞ Wj = L2(R). Let Vj = ⊕j

l=−∞ Wl .

Since it is not popular to deal with both infinities, we usually let VJ = V−1
⊕J

j=0 Vj , J � 0.

Numerical computations are carried out for a sufficient large J . If �(x) is related
to a multiresolution approximation of L2, then there is a scaling function ϕ(x) such that
{ϕj,k(x) : k ε Z} forms an orthonormal basis for Vj . Thus there are two kinds of bases for
VJ . The first involves both ϕ and � , and the second involves ϕ only. A function may be
expanding in both kinds of base. For more detailed discussions one may consult Strang [13]
and Chui [14].

Approximation properties of the finite-dimensional subspaces from which we choose the
trail functions is a crucial part of the error analysis in Galerkin methods. For the family of
Daubechies wavelets, Xu and Shann [15] proved that for a fixed t, u(x, ·)εH s(�), 0 � s � L

2
and PJ u = ∑

k uJ,kϕJ,k(x) being the L2 projection of u(x, ·) into VJ , we have

‖u − PJ u‖ � γ 2−sJ |u|s (6)

where γ is some positive constant independent of J and u. Here Hs(�) is the standard Sobolev
space and |u|s is the semi-norm defined on this space, i.e.

|u|2s =
∫

�

|u(s)(x, ·)|2 dx � = (a, b) (−∞ < a < b < ∞).

Connection coefficients (involving the scaling function) always occur in the application of
the wavelet-Galerkin procedure to differential equations. The connection coefficients required
for the problem at hand are

θi(x) =
∫ x

0

∫ yn

0
· · ·

∫ y2

0
ϕ(y1) dy1 · · · dyi−1 dyi (7)

Mi
k(x) =

∫ x

0
yiϕ(y − k) dy (8)

and

�n
k (x) =

∫ x

0
ϕ(n)(y − k)ϕ(y) dy (9)

where ϕ(n)(x) denotes the nth derivative of ϕ(x). Algorithms for computing these coefficients
are given in Chen et al [8]. When a set of connection coefficients required for a class of
equations is computed and stored, it may result in computational advantages. We computed
these three connection coefficients utilizing a Matlab coding based on algorithms in Chen
et al [8].

Before concluding this section let us refer to an error estimate of approximating a
continuously differentiable function by a polynomial interpolation at Chebyshev zeros. Let
pn(x) be the polynomial of degree at most n interpolating to Y (x) at the zeros of (n + 1)

Chebyshev polynomial. If Y (x) is (n + 1)-times continuously differentiable, then

|Y (x) − pn(x)| � 1

2n(n + 1)!
max
tε�

|Y (n+1)(t)| (10)
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where

pn(x) =
n∑

i=0

αix
i. (11)

The coefficients αi are to be determined utilizing Y (x) (see for instance Asithambi [16]
p 428).

3. Main results

In the following, we apply the proposed wavelet-Galerkin approximation scheme to find the
solution of the inhomogeneous diffusion equation subject to mass specification (1)–(4).

Let u(x, t) be approximated as an expansion of scaling functions at level J by

u(x, t) �
2J −1∑

k=2−L

uJ,k(t)ϕJ,k(x) (12)

where J � 1 and ϕJ,k(x) is given by (5). Substituting (12) into (1) and then applying the
Galerkin discretization scheme yields

2J −1∑
k=2−L

al,k

d

dt
uJ,k(t) =

2J −1∑
k=2−L

bl,kuJ,k(t) + 2J/2
∫ 1

0
S(x, t)ϕ(2J x − l) dx

(13)
l = 2 − L, 3 − L, . . . , 2J − 1.

The coefficients al,k and bl,k in the above system of first-order differential equations are given
by

al,k = �0
k−l (2

J − l) − �0
k−l (−l) (14)

bl,k = 22J
{
�2

k−l (2
J − l) − �2

k−l (−l)
}

(15)

where �n
k (x) is defined in (9). To compute the integrals on the right-hand side of (13), assume

that S(x, t) = S1(x) · S2(t) and S1(x) is (n + 1)-times continuously differentiable. Hence
S1(x) can be approximated by a polynomial as in (11) where its coefficients, say α1i , are
determined using S1(x). The integrals on the right-hand side of system (13), denoted by el ,
take the form

el =
√

2J S2(t)

n∑
i=0

2−(i+1)J α1iM
i
l (2

J ) l = 2 − L, 3 − L, . . . , 2J − 1 (16)

where Mi
l (2

J ) is defined by (8).
The initial conditions for the system of differential equations (13) are derived from the

initial condition u(x, 0) of the problem at hand by substituting series (12) into condition (2)
and applying the Galerkin discretization scheme. The initial conditions uJ,k(0) satisfy

2J −1∑
k=2−L

al,kuJ,k(0) = 2J/2
∫ 1

0
f (x)ϕ(2J x − l) dx l = 2 − L, 3 − L, . . . , 2J − 1. (17)

Requiring that f (x) be (n + 1)-times continuously differentiable function, it can be
approximated by an n polynomial, as in (11), whose coefficients, say α2i , are determined
using f (x). Consequently, the right-hand side of system (17), say rl, takes the form
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rl = 2J/2
n∑

i=0

2−(i+1)J α2iM
i
l (2

J ) l = 2 − L, 3 − L, . . . , 2J − 1. (18)

For u(x, t) to satisfy conditions (3) and (4), the expansion coefficients uJ,k(t) must satisfy the
following relations:

2J −1∑
k=2−L

uJ,k(t)ϕ(2J − k) = 2−J/2g(t) (19)

2J −1∑
k=2−L

uJ,k(t)[ϕ
(1)(2J β − k) − ϕ(1)(−k)] = 2−3J/2 d

dt
m(t). (20)

Inserting the two relations (19) and (20) into each of the two systems (13) and (18), one
may arrange the results in matrix form as

A
.

U= BU + E (21)

and

CU◦ = R (22)

where

U = (uJ,2−L(t) uJ,3−L(t) · · · uJ,2J −1(t))
T (23)

(T denotes the transpose), U̇ = d
dt

U and U◦ = U|t=0. A,B and C are square matrices of size
2J + L − 2 such that

A =




0 0 . . . 0

a3−L,2−L a3−L,3−L . . . a3−L,2J −1

a4−L,2−L a4−L,3−L . . . a4−L,2J −1

. . . .

. . . .

. . . .

a2J −2,2−L a2J −2,3−L . . . a2J −2,2J −1

0 0 . . . 0




B =




[
ϕ(1)(2J β + L − 2)−

ϕ(1)(L − 2)

]
. . .

[
ϕ(1)(2J (β − 1) + 1)−

ϕ(1)(1 − 2J )

]

b3−L,2−L . . . b3−L,2J −1

b4−L,2−L . . . b4−L,2J −1

. .

. . . . .

. .

b2J −2,2−L . . . b2J −2,2J −1

ϕ(2J + L − 2) . . . ϕ(1)
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and

C =




[
ϕ(1)(2J β + L − 2)−

ϕ(1)(L − 2)

]
. . .

[
ϕ(1)(2J (β − 1) + 1)−

ϕ(1)(1 − 2J )

]
a3−L,2−L . . . a3−L,2J −1

a4−L,2−L . . . a4−L,2J −1

. .

. . . . .

. .

a2J −2,2−L . . . a2J −2,2J −1

ϕ(2J + L − 2) . . . ϕ(1)




.

E and R are vectors given by

E =
(

−
√

2−3J
d

dt
m(t)

√
2J e3−L

√
2J e4−L · · ·

√
2J e2J −2 −

√
2J g(t)

)T

and

R =
(√

2−3J
d

dt
m(0)

√
2J r3−L

√
2J r4−L · · ·

√
2J r2J −1

√
2J g(0)

)T

respectively.
Having obtained the system of differential equations (21) and the system of initial

conditions (22) for uJ,k(t), we are in a position to utilize a numerical integration scheme
and find the expansion coefficients uJ,k(t).

4. Numerical experiments

In actual computation, we use Daubechies 6, i.e. L = 6, and discretize the variable t. Let
N be a natural number, 
t = T

N
and ti = i
t; i = 0, 1, . . . , N . Define the vector Ui

to be the vector given by (23) evaluated at t = ti . Using this notation, we approximate
.

U by 1

t

(Ui+1 − Ui) and U by 1
2 (Ui+1 + Ui). The system (21), then, yields the following

relations: (
A − 
t

2
B

)
Ui+1 = 
t · E +

(
A +


t

2
B

)
Ui i = 0, 1, . . . , N

which with system (22) gives an approximation to the expansion coefficients uJ,k(ti ).

In the following we consider an approximate solution u(x, t) of (1) with three different
sets of functions. The absolute relative errors are computed at various values of t and x. For
all examples the wavelet-Galerkin approximate solution is computed at J (scaling level) = 7,


t = 0.001 and each of S(x, t) and f (x) is interpolated by polynomials of degree 10. In the
first example β = 0.25, in the second β = 0.75 and in the third β = 0.5.

Example 1. Consider S(x, t) = −(1 + t2) ex/(1 + t2)2, f (x) = ex, g(t) = e/(1 + t2) and
m(t) = (e0.25 − 1)/(1 + t2). The exact solution uex(x, t) is ex/(1 + t2), see table 1.

Example 2. Let S(x, t) = (1 + π2 + t) cos x, f (x) = π2 cos x, g(t) = (π2 + t) cos(1.0) and
m(t) = (π2 + t) sin(0.75), then the exact solution uex(x, t) is (π2 + t) cos x, see table 2.
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Table 1. Results for example 1.

x t Exact solution Approximate solution Absolute relative error

0.25 0.025 1.283 223 1.283 193 2.38 × 10−5

0.05 1.280 823 1.280 765 4.56 × 10−5

0.1 1.271 312 1.271 207 8.29 × 10−5

0.5 0.025 1.647 691 1.647 651 2.46 × 10−5

0.05 1.644 610 1.644 534 4.61 × 10−5

0.1 1.632 397 1.632 272 7.70 × 10−5

0.75 0.025 2.115 678 2.115 633 2.12 × 10−5

0.05 2.111 721 2.111 648 3.45 × 10−5

0.1 2.096 040 2.095 934 5.02 × 10−5

Table 2. Results for example 2.

x t Exact solution Approximate solution Absolute relative error

0.25 0.025 9.577 005 9.587 025 2.07 × 10−6

0.05 9.611 228 9.611 272 4.63 × 10−6

0.1 9.659 674 9.659 767 9.79 × 10−6

0.5 0.025 8.683 332 8.683 344 1.79 × 10−6

0.05 8.705 272 8.705 298 3.00 × 10−6

0.1 8.749 151 8.749 208 6.54 × 10−6

0.75 0.025 7.239 772 7.239 781 1.21 × 10−6

0.05 7.258 064 7.258 080 2.24 × 10−6

0.1 7.294 649 7.294 680 4.29 × 10−6

Table 3. Results for example 3.

x t Exact solution Approximate solution Absolute relative error

0.25 0.025 1.029 619 1.029 611 8.477 × 10−6

0.05 1.047 319 1.047 302 1.63 × 10−5

0.1 1.081 805 1.081 772 3.03 × 10−5

0.5 0.025 1.115 142 1.115 134 6.46 × 10−6

0.05 1.131 402 1.131 388 1.23 × 10−5

0.1 1.163 151 1.163 125 2.20 × 10−5

0.75 0.025 1.193 922 1.193 917 4.55 × 10−6

0.05 1.208 960 1.208 951 7.90 × 10−6

0.1 1.238 374 1.238 358 1.29 × 10−5

Example 3. Choose S(x, t) = 2(x + 2t + 3)/(x + 2t + 2.5)2, f (x) = ln(x + 2.5),
g(t) = ln(2t + 3.5) and m(t) = (2t + 3) ln(2t + 3) − (2t + 2.5) ln(2t + 2.5) − 0.5, so that the
exact solution uex(x, t) is ln (x + 2t + 2.5), see table 3.
Remark. In the third example S(x, t) is not a separable function in variables x and t.
Therefore, when the variable t is discretized, then each of S(x, ti), i = 0, 1, . . . , N , is
interpolated by a polynomial (assuming that S(x, ·) is continuously differentiable).

In order to demonstrate the effect of the scaling level J and time step size 
t on the
obtained approximate solutions, several numerical experiments are carried out using different
values of J and 
t . It has been found that the obtained solutions for all the considered
problems coincide in their convergence behaviour over the spatial variable x. Therefore,
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Figure 1. Absolute relative error for different values of scaling level J . (a) Time step size

t = 0.01; (b) time step size 
t = 0.0005.
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Figure 2. Absolute relative error for different values of 
t (Dt ≡ 
t). (a) Scaling level j = 7;
(b) scaling level j = 9.

we present convergence curves to indicate the effect of J and 
t on the solution using example
3 at x = 0.5. The error as a function of scaling level J and the error as a function of time step 
t

are displayed in figures 1 and 2, respectively. Figure 1 shows absolute relative errors for three
different scaling levels (J = 7, J = 8 and J = 9). The absolute relative errors are computed
with different values of 
t , in figure 1(a) 
t = 0.01, and in figure 1(b) 
t = 0.0005. Figure 1
declares that as J is increased, for a given 
t , the accuracy of the solution is improved. For a
relatively large 
t the effect of the scaling level J on improving the accuracy is insignificant.
Figure 2 displays the absolute relative errors for different values of 
t with fixed scaling level
J = 7 in figure 2(a), and J = 9 in figure 2(b). It can be seen from both figures that as 
t is
decreased the accuracy of the solution is improved. However, unlike the convergence of the
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Galerkin procedure of [1], the proposed wavelet-Galerkin method maintains convergence for
large 
t .

The present method competes well with alternative methods. Example 1 is solved in
[4] using a backward difference numerical scheme for some different grid sizes. It is
reported in [4], that the maximum absolute error detected for the best choice of grid sizes
(
x = 
t = 0.0001) is 0.006. However, for the same problem the proposed approach
reveals that the maximum absolute error using J = 7 and 
t = 0.001 is 0.0002, while using
the same J and 
t = 0.0001, it is 0.000 018.

5. Conclusion

This paper provides a technical description of the application of the wavelet-Galerkin method
for the numerical solution of inhomogeneous diffusion equations subject to mass specification
involving non-polynomial functions. The application of the method was shown in all essential
technical details. The efficiency of the proposed method is indicated in some numerical
experiments. The obtained approximate solutions are in good agreement with the exact ones.
Besides, from these promising experimental results, we believe that the interest of the scheme
lies in its ease of programming and implementation on such kinds of partial differential
equations.
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